อินทิเกรต

ปริพันธ์ (อังกฤษintegral) คือ ฟังก์ชันที่ใช้หา พื้นที่มวลปริมาตร หรือผลรวมต่างๆ. เราอาจหาปริพันธ์ได้หลายวิธี แต่ไม่ว่าหาด้วยวิธีใด ก็จะได้ผลลัพธ์เท่ากันเสมอ. การหาปริพันธ์ (integration) เป็นกระบวนการที่ต่างจากการหาอนุพันธ์ แต่ก็มีความเกี่ยวข้องกัน

'ปริพันธ์' ต่างจากปฏิยานุพันธ์ แต่ทั้งสองมีความสัมพันธ์ที่ใกล้เคียงกัน ทฤษฎีบทมูลฐานของแคลคูลัสจะอธิบายว่าทำไมปริพันธ์กับปฏิยานุพันธ์ถึงเกี่ยวข้องกัน. ปริพันธ์แบบปฏิยานุพันธ์ คือ ปริพันธ์ไม่จำกัดเขต (indefinite integral) แต่ปริพันธ์ที่กล่าวถึงในบทความนี้ จะเป็นปริพันธ์จำกัดเขต (definite integral)

ปริพันธ์ของฟังก์ชันจำนวนจริงบวกที่ต่อเนื่อง และมีตัวแปร x อยู่ระหว่างจุด a กับจุด b ก็คือ พื้นที่ที่ถูกปิดล้อมด้วยเส้น x=ax=b, แกน x และเส้นโค้ง f(x) ดังรูป. หรือจะกล่าวให้เป็นทางการขึ้นว่า ถ้าเราให้

 S= \{(x,y) \in \mathbb{R}^2:a \leq x \leq b ,0 \leq y \leq f(x)\}

แล้วปริพันธ์ของฟังก์ชัน f ระหว่าง a กับ b ก็คือการวัดขนาดของ S นั่นเอง

ไลบ์นิซ ได้ใช้เครื่องหมาย s ยาว แทนสัญลักษณ์ของปริพันธ์ ปริพันธ์ในย่อหน้าที่แล้วจะเขียนแทนด้วยสัญลักษณ์ \int_a^b f(x)\,dx. โดยสัญลักษณ์ ∫ หมายถึงการหาปริพันธ์, a และ b หมายถึงขอบเขตของช่วงที่เราจะหา, f(x) คือฟังก์ชันที่เราต้องการหาปริพันธ์ และ dx แทนตัวแปรที่จะหาปริพันธ์ ซึ่งในอดีต dx จะแทน ปริมาณที่เล็กมากๆ และ s ยาว นั้นมาจากคำว่า 'sum' ซึ่งแปลว่าผลบวก

ตัวอย่างเช่น ให้ f(x) = 3 ปริพันธ์ของ 0 ถึง 10 ก็คือพื้นที่ที่ล้อมด้วยเส้น x = 0, x = 10, y = 0, และ y = 3 ดังนั้น พื้นที่สี่เหลี่ยมรูปนี้จึงเท่ากับความยาวคูณความสูง ค่าของปริพันธ์จึงเท่ากับ 30

ปริพันธ์ของ f(x) คือพื้นที่ที่อยู่ระหว่างเส้น y = f(x) กับแกน x และอยู่ในช่วง [ab]


วิธีหาปริพันธ์ที่พื้นฐานที่สุด ก็คือใช้ทฤษฎีบทมูลฐานของแคลคูลัสในการหา ซึ่งมีขั้นตอนดังนี้

  1. กำหนดฟังก์ชัน f(x) และช่วง [ab]
  2. หาปฏิยานุพันธ์ของ f ก็คือ หาฟังก์ชัน F ที่ F' เท่ากับ f
  3. จากทฤษฎีบทมูลฐานของแคลคูลัส จะได้ว่า \int_a^b f(x)\,dx = F(b)-F(a)
  4. ค่าของปริพันธ์คือ F(b) − F(a)

สังเกตว่าปริพันธ์ไม่ใช่ปฏิยานุพันธ์ แต่ปฏิยานุพันธ์นำมาใช้หาปริพันธ์จำกัดเขตได้

ขั้นตอนที่ยากก็คือขั้นที่หาปฏิยานุพันธ์ของ f แต่เราอาจจะใช้เทคนิคบางอย่างช่วยหาปริพันธ์ได้ เทคนิคเหล่านั้นได้แก่




การหาปริพันธ์โดยการแทนค่า
การหาปริพันธ์เป็นส่วน
การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ
การหาปริพันธ์โดยใช้เศษส่วนย่อย      



อ้างอิง

http://th.wikipedia.org/wiki/%E0%B8%...B8%98%E0%B9%8C 

รูปภาพที่เกี่ยวข้อง

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


kittipoom

สถานะ : ผู้ใช้ทั่วไป
เครื่องกล