แคลคูลัส

ประวัติต้นกำเนิดของแคลคูลัสเชิงปริพันธ์ย้อนไปถึงยุคกรีกโบราณ ยูโดซัส มักจะเป็นที่รู้จักกันในนามของผู้ที่ค้นพบ วิธีการแจงกรณี ซึ่งทำให้สามารถคำนวณหาพื้นที่และปริมาตรได้ อาร์คิมิดีส ได้พัฒนาวิธีการนี้ต่อ และได้พัฒนาวิธีการช่วยคำนวณ ซึ่งคล้ายคลึงกับแนวคิดในปัจจุบันด้วย ไลบ์นิซ และ นิวตัน มักจะได้รับการยอมรับว่าเป็นผู้ที่คิดค้นแคลคูลัสขึ้นมา โดยเฉพาะการค้นพบทฤษฎีบทมูลฐานของแคลคูลัสมีการโต้เถียงกันว่านิวตันหรือไลบ์นิซ ที่เป็นผู้ที่ค้นพบแนวคิดหลักของแคลคูลัสก่อน ความจริงนั้นไม่มีใครรู้ได้ สิ่งที่ยิ่งใหญ่ที่สุด ที่ไลบ์นิซได้พัฒนาให้กับแคลคูลัส คือ เครื่องหมายของเขา เขามักจะใช้เวลาเป็นวัน ๆ นั่งคิดถึงสัญลักษณ์ที่เหมาะสม ที่จะแทนที่แนวคิดทางคณิตศาสตร์ อย่างไรก็ตาม การโต้เถียงกันระหว่างไลบ์นิซ และนิวตัน ได้แบ่งแยกนักคณิตศาสตร์ที่พูดภาษาอังกฤษ ออกจากนักคณิตศาสตร์ในยุโรป เป็นเวลานานหลายปี ซึ่งทำให้คณิตศาสตร์ในอังกฤษล้าหลังกว่ายุโรปเป็นเวลานาน เครื่องหมายที่นิวตันใช้นั้น คล่องตัวน้อยกว่าของไลบ์นิซอย่างเห็นได้ชัด แต่ก็ยังใช้กันในอังกฤษจน Analytical Society ได้ใช้เครื่องหมายของไลบ์นิซในศตวรรษที่ 19 ตอนต้น สันนิษฐานกันว่า นิวตันค้นพบแนวคิดเกี่ยวกับแคลคูลัสก่อน แต่อย่างไรก็ตาม ไลบ์นิซเป็นผู้ที่เผยแพร่ก่อน ทุกวันนี้เป็นที่เชื่อกันว่า ทั้งนิวตันและไลบ์นิซต่างก็ค้นพบแคลคูลัสด้วยตนเอง

ผู้ที่ได้ชื่อว่าเป็นผู้พัฒนาวิชาแคลคูลัสนอกจากนี้คือ เดส์การตส์, Barrow, เดอ แฟร์มาต์, ฮอยเก้นส์ และ วอลลิส โดยเฉพาะ เดอ แฟร์มาต์ ซึ่งบางครั้งได้รับการยกย่องว่าเป็น บิดาแห่งแคลคูลัสเชิงอนุพันธ์. นักคณิตศาสตร์ชาวญี่ปุ่น โควะ เซกิ ซึ่งมีชีวิตอยู่ในช่วงเวลาเดียวกันกับ ไลบ์นิซ และนิวตัน ได้ค้นพบหลักการพื้นฐานบางอย่างเกี่ยวกับ แคลคูลัสเชิงปริพันธ์ แต่เขาไม่เป็นที่รู้จักในโลกตะวันตกในขณะนั้น และเขาก็ไม่ได้ติดต่อกับนักวิชาการชาวตะวันตกเลย

พื้นฐานของแคลคูลัส

พื้นฐานที่เคร่งครัดของแคลคูลัส มีฐานมาจาก แนวคิดของฟังก์ชัน และลิมิต มันรวมเทคนิคของพีชคณิตพื้นฐาน และการอุปนัยเชิงคณิตศาสตร์ การศึกษาพื้นฐานของแคลคูลัสสมัยใหม่ รู้จักกันในชื่อ การวิเคราะห์เชิงจริง ซึ่งประกอบด้วย นิยามที่เคร่งครัด และบทพิสูจน์ของทฤษฎีของแคลคูลัส เช่นทฤษฎีการวัด และการวิเคราะห์เชิงฟังก์ชัน


แคลคูลัส
 เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เรขาคณิต และปัญหาทางฟิสิกส์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้

แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว,ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์

(1-x^2) {d^2 y \over d x^2} - x {d y \over d x} + p^2 y = 0

แนวคิดที่สองคือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง ๆ. ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ (หรืออินทิเกรต) เป็นหลักในการคำนวณหาพื้นที่และปริมาตร

37aa1b38748e522f34ae3dd53f1cd1f4





อ้างอิง : http://technology2day.igetweb.com/index.php?mo=3&art=405362

รูปภาพที่เกี่ยวข้อง

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


Nueterd

สถานะ : ผู้ใช้ทั่วไป
เทคนิคการผลิต