แคลคูลัส


ที่มา

http://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%84%E0%B8%A5%E0%B8%84%E0%B8%B9%E0%B8%A5%E0%B8%B1%E0%B8%AA


แคลคูลัส
 เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เรขาคณิต และปัญหาทางฟิสิกส์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้

แนวคิดแรก คือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว,ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์

แนวคิดที่สอง คือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง ๆ ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ เป็นหลักในการคำนวณหาพื้นที่และปริมาตร

แคลคูลัสเชิงอนุพันธ์

อนุพันธ์ (derivative) คือการหาค่าความเปลี่ยนแปลงของตัวแปรหนึ่ง เมื่ออีกตัวแปรหนึ่งเปลี่ยนแปลงในปริมาณที่น้อยมากๆ บางทีอนุพันธ์ที่เราจะได้พบครั้งแรกในโรงเรียนคือ สูตร อัตราเร็ว = ระยะทาง/เวลา สำหรับวัตถุที่เคลื่อนที่ด้วยอัตราเร็วคงที่ อัตราเร็วของคุณซึ่งเป็นอนุพันธ์ที่บอกการเปลี่ยนแปลงตำแหน่งในระยะเวลาหนึ่ง วิชาแคลคูลัสพัฒนาขึ้น เพื่อจัดการกับปัญหาที่ซับซ้อนและเป็นธรรมชาติกว่านี้ ซึ่งอัตราเร็วของคุณอาจเปลี่ยนแปลงได้

เมื่อเรากล่าวถึงรายละเอียดแล้ว แคลคูลัสเชิงอนุพันธ์ นิยามอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง (อนุพันธ์) ระหว่างค่าของฟังก์ชัน กับตัวแปรของฟังก์ชัน นิยามจริงๆของอนุพันธ์คือลิมิตของอัตราส่วนในการเปลี่ยนแปลง (difference quotient). อนุพันธ์คือหัวใจของวิทยาศาสตร์กายภาพ กฎการเคลื่อนที่ของนิวตัน แรง = มวล×ความเร่ง มีความหมายในแคลคูลัส เพราะว่า ความเร่งเป็นอนุพันธ์ค่าหนึ่ง ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวล และทฤษฎีแรงโน้มถ่วงของไอน์สไตน์ (สัมพัทธภาพทั่วไป) นั่นได้กล่าวถึงด้วยภาษาของแคลคูลัสเชิงอนุพันธ์ เช่นเดียวกันกับทฤษฎีพื้นฐานของวงจรไฟฟ้าอนุพันธ์ของฟังก์ชัน กล่าวถึงกราฟของฟังก์ชันนั้นในช่วงสั้น ๆ ซึ่งทำให้เราสามารถหาจุดสูงสุด และจุดต่ำสุด ของฟังก์ชันได้

แคลคูลัสเชิงปริพัน์

แคลคูลัสเชิงปริพันธ์ศึกษาวิธีการหาปริพันธ์ (อินทิกรัล, Integral) ของฟังก์ชัน ซึ่งอาจนิยามจากลิมิตของผลรวมของพจน์ (ซึ่งเรียกว่าลิมิตของผลรวมรีมันน์) แต่ละพจน์นั้นคือพื้นที่ที่เป็นสี่เหลี่ยมผืนผ้าแต่ละแถบใต้กราฟของฟังก์ชัน ทำให้การอินทิเกรตเป็นวิธีที่ได้ผลวิธีหนึ่งในการหาพื้นที่ ใต้กราฟ พื้นที่ผิว และ ปริมาตร

พิ้นฐานของแคลคูลัส

        พื้นฐานที่เคร่งครัดของแคลคูลัส มีฐานมาจาก แนวคิดของฟังก์ชัน และลิมิต มันรวมเทคนิคพีชคณิตพื้นฐาน และการอุปนัยเชิงคณิตศาสตร์ การศึกษาพื้นฐานของแคลคูลัสสมัยใหม่ รู้จักกันในชื่อ การวิเคราะห์เชิงจริง ซึ่งประกอบด้วย นิยามที่เคร่งครัด และบทพิสูจน์ของทฤษฎีของแคลคูลัส 

การประยุกต์ใช้

การพัฒนาและการใช้แคลคูลัสได้ขยายผลไปแทบทุกส่วนของการใช้ชีวิตในยุคใหม่ มันเป็นพื้นฐานของวิทยาศาสตร์เกือบทุกสาขาโดยเฉพาะ ฟิสิกส์ การพัฒนาสมัยใหม่เกือบทั้งหมด เช่น เทคนิคการก่อสร้างการบิน และเทคโนโลยีอื่น ๆ เกือบทั้งหมด มีพื้นฐานมาจากแคลคูลัส

 

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


Lucife12z

สถานะ : ผู้ใช้ทั่วไป
อิเล็กทรอนิกส์