¿Ñ§¡ìªÑ¹¢Í§ÊͧµÑÇá»ÃáÅÐÁÒ¡¡ÇèÒÊͧµÑÇá»Ã
ÿÿÿÿÿ ¿Ñ§¡ìªÑ¹¢Í§ÊͧµÑÇá»ÃáÅÐÁÒ¡¡ÇèÒÊͧµÑÇá»Ã
ÿÿÿÿ ͹ؾѹ¸ì f ¢Í§¿Ñ§¡ìªÑ¹ f àͧ¡çà»ç¹¿Ñ§¡ìªÑ¹ ¤ÇÒÁ¨ÃÔ§ f 'ÊèǹÁÒ¡¨Ðà»ç¹¿Ñ§¡ìªÑ¹·ÕèËÒ͹ؾѹ¸ì ä´é´éÇ ´Ñ§¹Ñé¹ f 'ÁÕ͹ؾѹ¸ì «Öè§à¢Õ¹᷹´éÇ f'' , f ''ÁÕ͹ؾѹ¸ì«Öè§à¢Õ¹᷹´éÇ f'''
¹ÔÂÒÁ
f''(x) = Dx(f'(x))
f'''(x) = Dx(f''(x))
f (4)(x) = Dx(f'''(x))
….………….…
àÃÕ¡ f'ÇèÒ͹ؾѹ¸ìÍѹ´ÑºË¹Öè§ (the first derivative) ¢Í§ f
f''ÇèÒ͹ؾѹ¸ìÍѹ´ÑºÊͧ (the second derivative) ¢Í§ f'
f'''ÇèÒ͹ؾѹ¸ìÍѹ´ÑºÊÒÁ(the third derivative) ¢Í§ f''
¶éÒ Íѹ´Ñº n ÊÙ§¡ÇèÒ 3 áÅéÇàÃÒà¢Õ¹ f (n) á·¹ ͹ؾѹ¸ìÍѹ´Ñº·Õè n (nth
derivative) ¢Í§ f
µÑÇÍÂèÒ§
¶éÒ
ÿÿÿ
¡ÒÃËÒ͹ؾѹ¸ìÂèÍÂà»ç¹¡ÒÃËÒ͹ؾѹ¸ì¢Í§¿Ñ§¡ìªÑ¹¢Í§µÑÇá»ÃÍÔÊÃÐ
µÑé§áµè ÊͧµÑÇ¢Öé¹ä»ËÃ×Í ¿Ñ§¡ìªÑ¹ËÅÒµÑÇá»Ã(function of several variables) à¹×èͧ¨Ò¡·Äɮվ×é¹°Ò¹¢Í§¿Ñ§¡ìªÑ¹ËÅÒµÑÇá»ÃÁÕ¤ÇÒÁᵡµèÒ§¨Ò¡
·Äɮվ×é¹°Ò¹¢Í§¿Ñ§¡ìªÑ¹Ë¹Öè§µÑÇá»Ãà»ç¹ÍÂèÒ§ÁÒ¡áµèÁÕ¤ÅéÒ¤ÅÖ§¡Ñº
·Äɮվ×é¹°Ò¹¢Í§¿Ñ§¡ìªÑ¹ÊͧµÑÇá»Ã¨Ö§¡ÅèÒǶ֧¿Ñ§¡ìªÑ¹ÊͧµÑÇá»Ãà»ç¹ÊèǹãËè
ÿÿÿÿÿÿÿÿÿÿ µÑÇá»Ã z àÃÕ¡ÇèÒ à»ç¹¿Ñ§¡ìªÑ¹(function)¢Í§ÊͧµÑÇá»Ã x áÅÐ y ¶éÒáµèÅФÙèÍѹ´Ñº (x,y)·Õè¡Ó˹´ãËéÊÒÁÒöËÒ¤èÒ z ä´éà¾Õ§˹Ö觤èÒà·èÒ¹Ñé¹àÃÒãªéÊÑÅѡɳì
ÿÿÿÿÿÿÿÿÿÿàÃÕ¡ x áÅÐ y ÇèÒµÑÇá»ÃÍÔÊÃÐ(independent variable)૵¢Í§¨Ø´(x,y) ·Õè·ÓãËé
µÑÇÍÂèÒ§
¨§ËÒâ´àÁ¹¢Í§¿Ñ§¡ìªÑ¹
¤èҢͧ z ¨Ðà»ç¹¨ÃÔ§¡çµèÍàÁ×èÍ
´Ñ§¹Ñé¹ â´àÁ¹¢Í§¿Ñ§¡ìªÑ¹¤×Í
͹ؾѹ¸ìÂèÍÂ
͹ؾѹ¸ì¸ÃÃÁ´Ò¢Í§¿Ñ§¡ìªÑ¹ËÅÒµÑÇá»Ãà·Õº¡ÑºË¹Öè§ã¹ËÅÒµÑÇá»ÃÍÔÊÃÐ «Öè§ËÒä´éâ´Â¡ÒÃãËéµÑÇá»ÃÍÔÊÃÐÍ×è¹æà»ç¹¤èÒ¤§µÑǨÐàÃÕ¡͹ؾѹ¸ì¸ÃÃÁ´Ò¹Ñé¹ ÇèÒ͹ؾѹ¸ìÂèÍ¢ͧ¿Ñ§¡ìªÑ¹à·Õº¡ÑºµÑÇá»Ã¹Ñé¹
ãËé f à»ç¹¿Ñ§¡ìªÑ¹¢Í§ x áÅÐ y ͹ؾѹ¸ìÂèÍ¢ͧ f(x,y) à·Õº¡Ñº x áÅÐ y à¢Õ¹᷹´éÇÂ
ÊÑÅѡɳìËÅѧ¹Ñ鹨ÐãªéàÁ×è͵éͧ¡ÒÃà¹é¹áÊ´§µÑÇá»Ã·Õè·ÓãËéà»ç¹¤èÒ¤§µÑÇâ´Â¹ÔÂÒÁ
àÁ×èÍ ÅÔÁÔµàËÅèÒ¹ÕéËÒ͹ؾѹ¸ì·ÕèËÒ¤èÒä´é·Õè¨Ø´
͹ؾѹ¸ìÂèÍÂÍѹ´ÑºÊÙ§
ÊÓËÃѺ¿Ñ§¡ìªÑ¹
͹ؾѹ¸ìÂèÍÂÍѹ´ÑºÊͧ
àÁ×èÍ
ÊÓËÃѺÊÑÅѡɳì
´Ñ§¹Ñé¹
͹ؾѹ¸ìÂèÍÂÍѹ´ÑºÊÒÁ
àÁ×èÍ
àÁ×èÍ
ÊÓËÃѺ͹ؾѹ¸ìÂèÍÂÍѹ´Ñº·ÕèÁÒ¡¡ÇèÒÊÒÁ¢Öé¹ä»¡ç·Óä´é㹷ӹͧà´ÕÂǡѹ
ÍéÒ§ÍÔ§
http://www.science.cmu.ac.th/department/math/Project499/JAMRAS/partial_differention10.html