แคลคูลัสเชิงอนุพันธ์

อนุพันธ์ (derivative) คือการหาค่าความเปลี่ยนแปลงของตัวแปรหนึ่ง เมื่ออีกตัวแปรหนึ่งเปลี่ยนแปลงในปริมาณที่น้อยมากๆ บางทีอนุพันธ์ที่เราจะได้พบครั้งแรกในโรงเรียนคือ สูตร อัตราเร็ว = ระยะทาง/เวลา สำหรับวัตถุที่เคลื่อนที่ด้วยอัตราเร็วคงที่ อัตราเร็วของคุณซึ่งเป็นอนุพันธ์ที่บอกการเปลี่ยนแปลงตำแหน่งในระยะเวลาหนึ่ง วิชาแคลคูลัสพัฒนาขึ้น เพื่อจัดการกับปัญหาที่ซับซ้อนและเป็นธรรมชาติกว่านี้ ซึ่งอัตราเร็วของคุณอาจเปลี่ยนแปลงได้

เมื่อเรากล่าวถึงรายละเอียดแล้ว แคลคูลัสเชิงอนุพันธ์ นิยามอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง (อนุพันธ์) ระหว่างค่าของฟังก์ชัน กับตัวแปรของฟังก์ชัน นิยามจริงๆ ของอนุพันธ์คือ ลิมิตของอัตราส่วนในการเปลี่ยนแปลง (difference quotient). อนุพันธ์คือหัวใจของวิทยาศาสตร์กายภาพ กฎการเคลื่อนที่ของนิวตัน แรง = มวล×ความเร่ง มีความหมายในแคลคูลัส เพราะว่า ความเร่งเป็นอนุพันธ์ค่าหนึ่ง ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวล และทฤษฎีแรงโน้มถ่วงของไอน์สไตน์ (สัมพัทธภาพทั่วไป) นั่นได้กล่าวถึงด้วยภาษาของแคลคูลัสเชิงอนุพันธ์ เช่นเดียวกันกับทฤษฎีพื้นฐานของวงจรไฟฟ้า

อนุพันธ์ของฟังก์ชัน กล่าวถึงกราฟของฟังก์ชันนั้นในช่วงสั้น ๆ ซึ่งทำให้เราสามารถหาจุดสูงสุด และจุดต่ำสุด ของฟังก์ชันได้ เพราะว่าที่จุดเหล่านั้นกราฟจะขนานกับแกนราบ ดิเฟอเรนเชียล แคลคูลัสยังมีการประยุกต์ใช้อื่นๆอีก เช่น ระเบียบวิธีของนิวตัน (Newton's Method) ซึ่งเป็นวิธีในการหาค่ารากของฟังก์ชัน โดยการประมาณค่าโดยเส้นสัมผัส ดังนั้นแคลคูลัสเชิงอนุพันธ์ จึงสามารถนำไปประยุกต์ใช้กับหลากหลายคำถาม ซึ่งถ้ามองแค่ผิวเผินอาจคิดว่า ไม่อาจใช้แคลคูลัสจัดการได้

เว็ปที่เกี่ยวข้อง
http://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%84%E0%B8%A5%E0%B8%84%E0%B8%B9%E0%B8%A5%E0%B8%B1%E0%B8%AA

รูปภาพที่เกี่ยวข้อง

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


AgonyOFHayat

สถานะ : ผู้ใช้ทั่วไป
ไฟฟ้ากำลัง