แคลคูลัส

โดยทั่วไปแล้ว ทฤษฎีบทนี้กล่าวว่าผลรวมของการเปลี่ยนแปลงที่น้อยยิ่ง ในปริมาณในช่วงเวลา (หรือปริมาณอื่นๆ) นั้นเข้าใกล้การเปลี่ยนแปลงรวม

เพื่อให้เห็นด้วยกับข้อความนี้ เราจะเริ่มด้วยตัวอย่างนี้ สมมติว่าอนุภาคเดินทางบนเส้นตรงโดยมีตำแหน่งจากฟังก์ชัน x(t) เมื่อ t คือเวลา อนุพันธ์ของฟังก์ชันนี้เท่ากับความเปลี่ยนแปลงที่น้อยมากๆของ x ต่อช่วงเวลาที่น้อยมากๆ (แน่นอนว่าอนุพันธ์ต้องขึ้นอยู่กับเวลา) เรานิยามความเปลี่ยนแปลงของระยะทางต่อช่วงเวลาว่าเป็นอัตราเร็ว v ของอนุภาค ด้วยสัญกรณ์ของไลบ์นิซ

 

เมื่อจัดรูปสมการใหม่จะได้

 

จากตรรกะข้างต้น ความเปลี่ยนแปลงใน x ที่เรียกว่า Δx คือผลรวมของการเปลี่ยนแปลงที่น้อยมากๆ dx มันยังเท่ากับผลรวมของผลคูณระหว่างอนุพันธ์และเวลาที่น้อยมากๆ ผลรวมอนันต์นี้คือปริพันธ์ ดังนั้นการหาปริพันธ์ทำให้เราสามารถคืนฟังก์ชันต้นของมันจากอนุพันธ์ เช่นเดียวกัน การดำเนินการนี้ผกผันกัน หมายความว่าเราสามารถหาอนุพันธ์ของผลการหาปริพันธ์ ซึ่งจะได้ฟังก์ชันอัตราเร็วคืนมาได้

ทฤษฎีบทนี้ว่าไว้ว่า

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่นิยามสำหรับ x ที่อยู่ใน [a, b] ว่า

 

แล้ว

 

สำหรับทุก x ที่อยู่ใน [a, b]

ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่

สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

 

 

 

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b]. ถ้า F เป็นฟังก์ชันที่

สำหรับทุก x ที่อยู่ใน [a, b]

แล้ว

 

และ

 

กำหนดให้

 

ให้ x1 และ x1 + Δx อยู่ในช่วง [a, b] จะได้

 

และ

 

นำทั้งสองสมการมาลบกันได้

 

เราสามารถแสดงได้ว่า

 

(ผลรวมพื้นที่ของบริเวณที่อยู่ติดกัน จะเท่ากับ พื้นที่ของบริเวณทั้งสองรวมกัน)

ย้ายข้างสมการได้

 

นำไปแทนค่าใน (1) จะได้

 

ตามทฤษฎีบทค่าเฉลี่ยสำหรับการอินทิเกรต จะมี c อยู่ในช่วง [x1, x1 + Δx] ที่ทำให้

 

แทนค่าลงใน (2) ได้

 

หารทั้งสองข้างด้วย Δx จะได้

 

สังเกตว่าสมการข้างซ้าย คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient) ของ F ที่ x1

ใส่ลิมิต Δx → 0 ทั้งสองข้างของสมการ

 

สมการข้างซ้ายจะเป็นอนุพันธ์ของ F ที่ x1

 

เพื่อหาลิมิตของสมการข้างขวา เราจะใช้ทฤษฎีบท squeeze เพราะว่า c อยู่ในช่วง [x1, x1 + Δx] ดังนั้น x1cx1 + Δx

จาก และ

ตามทฤษฎีบท squeeze จะได้ว่า

 

แทนค่าลงใน (3) จะได้

 

ฟังก์ชัน f มีความต่อเนื่องที่ c ดังนั้น เราสามารถนำลิมิตแทนในฟังก์ชันได้ ดังนั้น

 

จบการพิสูจน์

(Leithold et al, 1996)

http://www.tewlek.com/anet_cal.html

รูปภาพที่เกี่ยวข้อง

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


Noonna

สถานะ : ผู้ใช้ทั่วไป
การก่อสร้าง