บทความแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัส เบื้องต้น 
        
       ทฤษฎีบทมูลฐานของแคลคูลัส เบื้องต้น ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า การหาอนุพันธ์และการหาปริพันธ์เป็นวิธีการที่ตรงกันข้ามกัน กล่าวคือ ถ้าเราสร้างฟังก์ชันที่เป็นปริพันธ์ของฟังก์ชันหนึ่งขี้นมา อนุพันธ์ของฟังก์ชันที่เราสร้าง ก็จะเท่ากับฟังก์ชันนั้น นอกจากนี้ เรายังหาปริพันธ์จำกัดเขตได้ด้วยการกำหนดค่าให้กับปฏิยานุพันธ์ ทฤษฎีบทมูลฐานของแคลคูลัสเขียนในรูปสัญลักษณ์คณิตศาสตร์ได้ดังนี้: ถ้า f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f บนช่วง [a, b] แล้ว และสำหรับทุก x ในช่วง [a, b] จะได้ว่า ความจริงข้อนี้ปรากฏแก่ทั้งนิวตัน และไลบ์นิซ ซึ่งเป็นกุญแจนำไปสู่ การขยายผลลัพธ์เชิงวิเคราะห์อย่างมากมายหลังจากงานของทั้งสองเป็นที่รู้จัก. ความเชื่อมโยงนี้ ทำให้เราสามารถย้อนความเปลี่ยนแปลงทั้งหมดในฟังก์ชันในช่วงหนึ่ง จากอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง โดยการหาปริพันธ์ของส่วนหลัง. ทฤษฎีบทมูลฐานนี้ยังให้วิธีในการคำนวณหา ปริพันธ์จำกัดเขต ด้วยวิธีทางพีชคณิตเป็นจำนวนมาก โดยไม่ต้องใช้วิธีการหาลิมิต ด้วยการหาปฏิยานุพันธ์. ทฤษฎีบทนี้ยังอนุญาตให้เราแก้สมการเชิงอนุพันธ์ ซึ่งคือสมการที่เกี่ยวข้องกันระหว่าง ฟังก์ชันที่ไม่ทราบค่า และอนุพันธ์ของมัน. สมการเชิงอนุพันธ์นั้นมีอยู่ทั่วไปในวิทยาศาสตร์

http://www.hs4tnm.wordpress.com

รูปภาพที่เกี่ยวข้อง

ติชม


ต้องการให้คะแนนบทความนี้่ ?

สร้างโดย :


elecAekapol

สถานะ : ผู้ใช้ทั่วไป
อิเล็กทรอนิกส์